A Density Version of a Geometric Ramsey Theorem
نویسندگان
چکیده
Let V be an n-dimensional affine space over the field with pd elements, p 6= 2. Then for every ε > 0 there is an n(ε) such that if n = dim(V ) n(ε) then any subset of V with more than εjV j elements must contain 3 collinear points (i.e., 3 points lying in a one-dimensional affine subspace).
منابع مشابه
Lines Imply Spaces in Density Ramsey Theory
Some results of geometric Ramsey theory assert that if F is a finite field (respectively, set) and n is sufficiently large, then in any coloring of the points of Fn there is a monochromatic k-dimensional affine (respectively, combinatorial) subspace (see [9]). We prove that the density version of this result for lines (i.e., k = 1) implies the density version for arbitrary k. By using results i...
متن کاملInnite Combinatorics and the theorems of Steinhaus and Ostrowski
We de ne combinatorial principles which unify and extend the classical results of Steinhaus and Piccard on the existence of interior points in the distance set. Thus the measure and category versions are derived from one topological theorem on interior points applied to the usual topology and the density topology on the line. Likewise we unify the subgroup theorem by reference to a Ramsey prope...
متن کاملGeneralized local colorings of graphs
Let k be a fixed positive integer and let H be a graph with at least k + 1 edges. A local (H, k)-coloring of a graph G is a coloring of the edges of G such that edges of no subgraph of G isomorphic to a subgraph of H are colored with more than k colors. In the paper we investigate properties of local (H, k)-colorings. We prove the Ramsey property for such colorings, establish conditions for the...
متن کاملOn the Canonical Version of a Theorem in Ramsey Theory
We show that the constant colorings and the one-to-one colorings are insufficient for a canonical version of a certain theorem in Ramsey theory. Key phrases: van der Waerden’s theorem, arithmetic progression, piecewise syndetic, Ramsey Theory
متن کاملA parametrization of the abstract Ramsey theorem
We give a parametrization with perfect subsets of 2∞ of the abstract Ramsey theorem (see [13]). Our main tool is an adaptation, to a more general context of Ramsey spaces, of the techniques developed in [8] by J. G. Mijares in order to obtain the corresponding result within the context of topological Ramsey spaces. This tool is inspired by Todorcevic’s abstract version of the combinatorial forc...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- J. Comb. Theory, Ser. A
دوره 32 شماره
صفحات -
تاریخ انتشار 1982